Oxytocin does not directly alter cardiac repolarization in rabbit or human cardiac myocytes

نویسندگان

  • Yusheng Qu
  • Mei Fang
  • BaoXi Gao
  • Shanti Amagasu
  • William J Crumb
  • Hugo M Vargas
چکیده

Oxytocin, a nine amino acid peptide, is highly conserved in placental mammals, including humans. Oxytocin has a physiological role in parturition and parenteral administration of the synthetic peptide is used to induce labor and control postpartum hemorrhage. Endogenous levels of oxytocin before labor are ∼20 pg/mL, but pharmacological administration of the peptide can achieve levels of 110 pg/mL (0.1 nmol/L) following intravenous administration. Cardiac arrhythmia and premature ventricular contractions have been associated with oxytocin administration in addition to QTc interval prolongation. In the conscious rabbit model, intravenous oxytocin produced QT and QTc prolongation. The mechanism of oxytocin-induced QTc prolongation is uncertain but could be the result of indirect changes in autonomic nervous tone, or a direct effect on the duration of cardiomyocyte repolarization. The purpose of this study was to examine the ability of oxytocin to alter cardiac repolarization directly. Two conventional models were used: QTc interval evaluation in the isolated rabbit heart (IRH) and assessment of action potential duration (APD) in human ventricular myocytes (HVM). Oxytocin did not prolong QTc intervals in IRH or APD in HVM when tested at suprapharmacological concentrations, for example, up to 1 μmol/L. The results indicate that oxytocin has very low risk for eliciting QTc and APD prolongation directly, and infer that the QTc changes observed in vivo may be attributed to an indirect mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transgenic rabbit model for human troponin I-based hypertrophic cardiomyopathy.

BACKGROUND Transgenic and gene-targeted models have focused on the mouse. Fundamental differences between the mouse and human exist in Ca2+ handling during contraction/relaxation and in alterations in Ca2+ flux during heart failure, with the rabbit more accurately reflecting the human system. METHODS AND RESULTS Cardiac troponin I (cTnI) mutations can cause familial hypertrophic cardiomyopath...

متن کامل

Effects of Ecstasy on Mouse Cardiac Histopathology, Electrocardiogram and Blood Cell Counts

Background and Aims: Ecstasy or 3, 4-methylenedioxymethamphetamine (MDMA) is a brain stimulant and a hallucinogenic material prepared by chemical changes in amphetamine. The aim of this study was to evaluate the changes induced by this drug in mouse cardiac histopathology, electrocardiogram (ECG) and blood cell counts. Materials and Methods: In this experiment, 3 groups (n=10) of mice were e...

متن کامل

Loss of cardiac magnesium in experimental heart failure prolongs and destabilizes repolarization in dogs.

OBJECTIVES We sought to determine whether heart failure results in loss of cardiac magnesium sufficient to alter cellular electrophysiology. BACKGROUND Free magnesium has numerous intracellular roles affecting metabolism, excitability and RNA synthesis. Total cardiac magnesium content is reduced in heart failure, but it is unclear whether magnesium loss is primary or iatrogenic. Furthermore, ...

متن کامل

Overexpression of a human potassium channel suppresses cardiac hyperexcitability in rabbit ventricular myocytes.

The high incidence of sudden death in heart failure may reflect abnormalities of repolarization and heightened susceptibility to arrhythmogenic early afterdepolarizations (EADs). We hypothesized that overexpression of the human K+ channel HERG (human ether-a-go-go-related gene) could enhance repolarization and suppress EADs. Adult rabbit ventricular myocytes were maintained in primary culture, ...

متن کامل

Irregularly appearing early afterdepolarizations in cardiac myocytes: random fluctuations or dynamical chaos?

Irregularly occurring early afterdepolarizations (EADs) in cardiac myocytes are traditionally hypothesized to be caused by random ion channel fluctuations. In this study, we combined 1), patch-clamp experiments in which action potentials were recorded at different pacing cycle lengths from isolated rabbit ventricular myocytes under several experimental conditions inducing EADs, including oxidat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015